Bayesian Hierarchical Rule Modeling for Predicting Medical Conditions

نویسندگان

  • Cynthia Rudin
  • David Madigan
  • Tyler H. McCormick
چکیده

We propose a statistical modeling technique, called the Hierarchical Association Rule Model (HARM), that predicts a patient’s possible future medical conditions given the patient’s current and past history of reported conditions. The core of our technique is a Bayesian hierarchical model for selecting predictive association rules (such as “condition 1 and condition 2 → condition 3”) from a large set of candidate rules. Because this method “borrows strength” using the conditions of many similar patients, it is able to provide predictions specialized to any given patient, even when little information about the patient’s history of conditions is available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Hierarchical Rule Modeling for Predicting Medical Conditions1,2 by Tyler

We propose a statistical modeling technique, called the Hierarchical Association Rule Model (HARM), that predicts a patient’s possible future medical conditions given the patient’s current and past history of reported conditions. The core of our technique is a Bayesian hierarchical model for selecting predictive association rules (such as “condition 1 and condition 2 → condition 3”) from a larg...

متن کامل

MASSACHUSETTS INSTITUTE OF TECHNOLOGY by Bayesian Hierarchical Rule Modeling for Predicting Medical Conditions OR 385 - 11 Tyler H . McCormick

We propose a statistical modeling technique, called the Hierarchical Association Rule Model (HARM), that predicts a patient's possible future medical conditions given the patient's current and past history of reported conditions. The core of our technique is a Bayesian hierarchical model for selecting predictive association rules (such as " condition 1 and condition 2 → condition 3 ") from a la...

متن کامل

A Hierarchical Model for Association Rule Mining of Sequential Events: an Approach to Automated Medical Symptom Prediction

In many healthcare settings, patients visit healthcare professionals periodically and report multiple medical conditions, or symptoms, at each encounter. We propose a statistical modeling technique, called the Hierarchical Association Rule Model (HARM), that predicts a patient’s possible future symptoms given the patient’s current and past history of reported symptoms. The core of our technique...

متن کامل

An Empirical Study of Dynamic Bayesian User Modeling with Stochastic Processes

Six topologies of dynamic Bayesian Networks are evaluated for predicting the future user events: (1) Markov Chain of order 1, (2) Hidden Markov Model, (3) autoregressive Hidden Markov Model, (4) factorial Hidden Markov Model, (5) simple hierarchical Hidden Markov Model and (6) tree structured Hidden Markov Model. Goal of the investigation is to evaluate, which of these models has the best fit f...

متن کامل

Entropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection

Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011